
Note that this is not complete or well organised. There are still over 50 calls
to attend to, but must of the calls are finished and all but a few of the
unfinished calls have an input/output mentioned, even if there is no mention of
what the call does. If you have questions, feel free to email me or PM me at
Omnimaga or UnitedTI (I am Thuderbolt there).

The header to Grammer ASM programs is:
first two bytes are the normal BB6D
the next two bytes are 55C9
also, .org should be 9D91h instead of 9D93h
so here is a sample to copy and paste (I use Brass):
.nolist
#define TASM
#define bcall(xxxx) rst 28h \ .dw xxxx
#define equ .equ
.include "Grammer.inc"
.org 9D91h
.list
 .db $BB,6Dh,55h,$C9
Start:
To run the program on calc, do not use the Asm(token. If Grammer is installed,
its parser hook will detect that it is a Grammer program and will load it
properly. The program data (everything after the header) is copied to 9D95h even
if it is archived.
If Grammer is installed, regular assembly programs can be run from the
homescreen from RAM or archive that don't have the Grammer header and still use
Grammer calls. If the program is an ION, MirageOS, or DoorsCS program, a custom
error is thrown, instead.

I do not suggest releasing any no-stub programs that use Grammer calls.

 ld hl,GramName
 rst 10h
 in a,(6)
 push af
 bcall(4C4Eh)
 pop hl
 ret c
 push hl
 out (6),a
 call _CompatCall ;to load the Grammer RAM
;=========
;Insert your program code here and use ExitProg to restore the flashpage
;=========
ExitProg:
 pop af
 out (6),a
 ret

Project.........Grammer Documentation
Program.........Grammer (APP)
Author..........Zeda Elnara (ThunderBolt)
E-mail..........xedaelnara@gmail.com
Size............1-Page App
Language........English
Programming.....Assembly
Version.........2.24.12.11
Last Update.....24 December 2011

Call Info

Introduction
In an attempt to better document Grammer and its calls, this document

will adress at least the basic information of the calls available in the jump
table. This includes the address of the jump, the inputs and outputs, notes,
comments and any other information that may be useful. My hope and intent is to
open the floor to assembly programmers for creating new games and ideas by
allowing the use of premade routines from Grammer.

Terminology
_ProgramStart equ 4083h

Inputs:
Outputs:
Destroys: All

Notes: A program calls this to allow the Grammer parser to step in
_CompatCall equ 4086h

Inputs: The name of the program is in OP1
Outputs: z flag if the program has the proper header

A is the flashpage the data is on
BC is the size of the program
HL points to the data
(TempWord3) is A
(TempWord4) is BC
(TempWord5) is HL
Loads Grammer RAM

Destroys:
Notes: Use this to verify that a program is a Grammer program (or

just to get the info of the var)
_SelectedProg equ 4089h

Inputs: Outputs from _CompatCall
Outputs: Executes the program with the input data
Destroys: All

Notes: Call this if _CompatCall returns z
_ExecOP1 equ 408Ch

Inputs: OP1 contains the name of the var (in RAM) to execute
Outputs:
Destroys: all

Notes: Executes the program named in OP1 as a Grammer program
_ParserNext equ 408Fh

Inputs: (progPtr) contains the start address to parse at
BC is Ans

Outputs: BC contains the result of the parsing
HL, (progPtr) contains the end address of the parsing

Destroys: A,DE
Notes: Use this to parse Grammer code that ends with Stop or End

_ParseArg equ 4092h
Inputs: (progPtr) points to the code to execute

BC is Ans
Outputs: BC contains the result of the parsing

HL, (progPtr) contains the end address of the parsing
Destroys: A,DE

Notes: Use this to parse an argument
_ReadByte equ 4095h

Inputs: HL points to a pointer
Outputs: BC contains the byte value that the pointer points to

The 2-byte word at (hl) is incremented
DE points to the byte read
HL is not changed

Destroys:
Notes: HL points to the word that points to the byte to read. The

word is then incremented. This lets you store the location
of a variable to RAM and then read each byte incrmentally.

_Input equ 4098h
Inputs: BC is the buffer size minus 1

HL is the location of the buffer
Outputs: BC points to the string
Destroys: A,DE,HL

Notes: This is the Input routine used by Grammer

_PCycle equ 409Bh
Inputs: BC points to the particle buffer
Outputs: BC is the number of particles
Destroys: A,DE,HL

Notes: This will recalculate the position and redraw the particles
in the particle buffer.

_PCycleDefault equ 409Eh
Inputs: (PBufPtr) points to the particle buffer
Outputs: BC is the number of particles in the buffer
Destroys: A,DE,HL

Notes: See _PCycle
_PBufInfoDef equ 40A1h

Inputs: (PBufPtr) points to the particle buffer
Outputs: BC is the size of the particle buffer

DE is the number of particles
HL points to the particle data

Destroys:
Notes: This is used to obtain information about a particle buffer

_PBufInfo equ 40A4h
Inputs: HL points to the particle buffer
Outputs: BC is the size of the particle buffer

DE is the number of particles
HL points to the particle data

Destroys:
Notes: This is used to obtain information about a particle buffer

_NextParticle equ 40A7h
Inputs: Outputs from PBufInfo
Outputs: HL points to where the new particle will go

nz if there is enough room for ther particle
Destroys: Assume everything else for now

Notes:
_AddParticle equ 40AAh

Inputs: BC=ParticlePlot
HL=ParticleLoc

Outputs: The particle is added and drawn.
Destroys:

Notes: To just add it, use "ld (hl),c \ inc hl \ ld (hl),b"

_ShiftGraphBuf equ 40ADh
Inputs: A is the direction:

 Down : bit 0 set
 Left : bit 1 set
 Right : bit 2 set
 Up : bit 3 set
C is the number of shifts

Outputs:
Destroys: All registers

Notes: If you scan the arrow keys and invert the bits (using cpl),
it will be the proper input for this routine.

_ShiftGraphUpA equ 40B0h
Inputs: A is the number of shifts
Outputs:
Destroys: A,BC,DE,HL

Notes:
_ShiftGraphRightA equ 40B3h

Inputs: A is the number of shifts
Outputs:
Destroys: A,BC,DE,HL

Notes:
_ShiftGraphLeftA equ 40B6h

Inputs: A is the number of shifts
Outputs:
Destroys: A,BC,DE,HL

Notes:
_ShiftGraphDownA equ 40B9h

Inputs: A is the number of shifts
Outputs:
Destroys: A,BC,DE,HL

Notes:
_ZeroMemF equ 40BCh

Inputs: BC is the number of bytes minus 1 to zero
HL points to the data to fill

Outputs: A=BC=0
DE is the original HL, plus BC+1
HL is the original HL, plus BC

Notes: This will fill the bytes with 0

_SetMemF equ 40BFh
Inputs: A is the byte to fill with

BC is the number of bytes minus 1 to fill
HL points to the data to fill

Outputs: BC is 0
DE is the original HL, plus BC+1
HL is the original HL, plus BC

Destroys:
Notes: This will fill the bytes with the value in A

_ZeroMemE equ 40C2h
Inputs: BC is the number of bytes minus 1 to fill

HL points to the end of the data to fill
Outputs: A is 0

BC is 0
DE points to the byte before the start of the data
HL points to the start of the data

Destroys:
Notes: This fills the bytes with 0

_SetMemE equ 40C5h
Inputs: A is the byte to fill with

BC is the number of bytes minus 1 to fill
HL points to the end of the data to fill

Outputs: BC is 0
DE points to the byte before the start of the data
HL points to the start of the data

Destroys:
Notes: This fills the bytes with the value in A

_nCr equ 40C8h
Inputs: HL is n

DE is r
Outputs: BC is the result

interrupts off
a is 0
de is "n"
hl is the result
a' is not changed
bc' is "r"+1
de' is an intermediate calculation
hl' is "r" or the compliment, whichever is smaller

Destroys:
Notes: This performs "n choose r"

_SetSpeed equ 40CBh
Inputs: C is 0=6MHz, 1=15MHz, 2=Toggle speed
Outputs: C is the previous speed setting
Destroys:

Notes:
_ZeroMem equ 40CEh

Inputs: HL=Location
BC=size

Outputs: A is 0
Destroys:

Notes: Similar to _ZeroMems. This also detects if BC is 0.
_ClrDraw equ 40D1h

Inputs:
Outputs: A is 0

Clears the graph buffer
Sets the text coordinates to 0

Destroys: BC,DE,HL
Notes:

_ClrHome equ 40D4h
Inputs:
Outputs: A is 80h

Clears the homescreen buffer
Sets the (CurRow) and (CurCol) to 0

Destroys: BC,DE,HL
Notes:

_MaxMin equ 40D7h
Inputs: Bit 0 of A is 1 if you want the max of BC and HL

Bit 0 of A is 0 if you want the min of BC and HL
HL,BC

Outputs: BC contains the max or min of the two values
Destroys:

Notes:

_SetSmallMem equ 40DAh
Inputs: A is the value

B is the number of bytes (0 is 256)
HL is where to start

Outputs: B is 0
HL is incremented B times

Destroys:
Notes: This is used to set a section of memory to the same value.

_InvSmallMem equ 40DDh
Inputs: B is the number of bytes

HL is where to start
Outputs: B is 0

HL is incremented B times
Destroys:

Notes: This is used to set a section of memory to the same value.
_Rand equ 40E0h

Inputs:
Outputs: Loads random values to the registers A,B,C,D,E,H,L

(randSeed)
Destroys:

Notes:
_expr equ 40E3h

Inputs: BC is the location of the code to interpret
Outputs: BC is result
Destroys:

Notes: This will execute Grammer code to an EOL
_lcmBC_DE equ 40E6h

Inputs: BC,DE
Outputs: HL and BC are the least commom multiple of the inputs
Destroys: Make no assumptions.

Notes: This is used to compute the least common multiple
_gcdHL_BC equ 40E9h

Inputs: HL,BC
Outputs: BC is the greatest common divisor of HL and BC
Destroys: Probably the rest of the registers

Notes: This computes the GCD

_Pause equ 40ECh
Inputs: BC is the hundredths of seconds to pause
Outputs: BC is whatever DE was at input.
Destroys: DE,HL,A

Notes: If BC is 174, this will pause for 1.74 seconds.
_PlotPixel equ 40EFh

Inputs: BC is (x,y)
D is the method:
 0=PixelTest
 1=PixelOn
 2=PixelOff
 3=PixelInvert
bit 4 at iy+34 is the result of an out of bounds pixel test

Outputs: A is the value of the byte
BC is the pixel test value before drawing the pixel
D is 0
E is the mask used
HL points to the byte written to in the buffer

Destroys:
Notes:

_Call equ 40F2h
Inputs: BC points to the code to execute
Outputs: BC is the result of the code

HL points to the next byte
Destroys: A,DE

Notes: This will call a routine that ends with End.
_PutSM equ 40F5h

Inputs: HL points to the string to display
BC is the size

Outputs: BC is 0
HL points to the byte after the string

Destroys: A,DE
Notes: This will display a string on the current buffer using the

given fontset and style.

_PutSprite equ 40F8h
Inputs: A is the Method

 0=Overwrite
 1=AND
 2=XOR
 3=OR
 4=DataSwap
 5=Erase
BC is (x,y)
DE points to the sprite data
H is the height
L is the width (not used yet)

Outputs:
Destroys: All

Notes: This draws a sprite to pixel coordinates
_BreakProgram equ 40FBh

Inputs: (progPtr) is the location of the byte about to be parsed
(SPSave) is the address to use to reset the stack

Outputs:
Destroys:

Notes: This is supposed to exit the program. You should not need to
change (SPSave)

_ErrorJump equ 40FEh
Inputs: (parseError) points to Grammer code as an error handler,

otherwise this is 0.
(progPtr) points to the error
(8595h) contains the Grammer error value

Outputs:
Destroys:

Notes: This will throw an error.

_PutTile equ 4101h
Inputs: A is the Method

 0=Overwrite
 1=AND
 2=XOR
 3=OR
 4=Swap
 5=Erase
B is the width in bytes
C is the height in pixels
DE points to the sprite data
HL points to the buffer location to draw to

Outputs: A is 0
B is not changed
C is 12-B
HL is A*12 larger (next sprite down?)
DE points to the next byte after the sprite data

Destroys: a'
Notes: Sprite data is set up in rows, then columns. The input HL is

the offset into the draw buffer to start drawing at.
_CheckKey equ 4104h

Inputs: A is the key to check
Outputs: BC is 1 if the key is being pressed, else it is 0

z if the key is pressed, nz if the key is not pressed
Destroys:

Notes:
_GetKey equ 4107h

Inputs:
Outputs: A is the key press (0 to 56)

BC is the key press, also
D is the last key group tested
E is the same as A with a mask of %11111000
HL is not changed

Destroys:
Notes:

_ParseFullArg equ 410Ah
Inputs: (progPtr) points to the next byte to parse. The parsing

stops at a colon, comma, newline, or sto token.
BC is the input Ans

Outputs: A is the byte that ended the argument
BC is the result
(progPtr) points to the byte before the next argument
HL is the same as (prgPtr)

Destroys: DE
Notes: Use this to compute an argument. If there is an argument

immediately following, use _ParseNextFullArg after this.
_ParseNextFullArg equ 410Dh

Inputs: (progPtr) points to the byte before the argument to parse.
The parsing stops at a colon, comma, newline, or sto token.
BC is the input Ans

Outputs: A is the byte that ended the argument
BC is the result
(progPtr) points to the byte before the next argument
HL is the same as (prgPtr)

Destroys: DE
Notes: Use this to compute an argument.

_ParseCondition equ 4110h
Inputs: (progPtr) points to the next byte to parse. The parsing

stops at a colon, comma, newline, or sto token.
BC is the input Ans

Outputs: A is 3Fh
BC is the result
(progPtr) points to the byte before the next argument
HL is the same as (prgPtr)

Destroys: DE
Notes: This will parse a line of code (it parses until a newline).

_Sine equ 4113h
Inputs: A is the value to find the sine of (-127 to 127)
Outputs: A' is twice the input

BC is the result (-127 to 127)
Destroys: DE

Notes: add 40h to the input to compute the cosine.

_EndOfCommand equ 4116h
Inputs: (progPtr) points to a location
Outputs: (progPtr) and hl point to the byte ending the argument

HL is the same
A is the ending byte

Destroys:
Notes:

_EndOfArg equ 4119h
Inputs: A is the byte to test
Outputs: z if A is a byte that will end an argument
Destroys:

Notes:
_EndOfArgNotSto equ 411Ch

Inputs: A is the byte to test
Outputs: z if A is a byte that will end an argument
Destroys:

Notes: This will not test if A is a Sto token (04h)
_FindEndToken equ 411Fh Input: HL is the address, Output: HL points to the

byte after the proper End
_TokensToASCII equ 4122h Input: HL=StringLoc, Output: BC=Size, DE points to

string
_GetGrammerStr equ 4125h Input: HL=StartLoc, Output: BC=Size
_pVarPointer equ 4128h Input: A=pVar, HL=NextByte, Output: HL points to

var
_EndOfLine equ 412Bh Input: HL=Start, Output: HL is tyhe next line
_EndOfNumber equ 412Eh Input: HL points to the number, Output: HL points

to the end
_EndOfHexNum equ 4131h Input: HL points to start, Output: HL points to

the end
_IsHexTok equ 4134h Input: DE points to byte, Output: DE is

incremented, nc if hex token
_ConvRStr equ 4137h Input: HL points to the number (or byte before),

Output: HL points to the byte after the number, BC
is the result

_HL_Times_BC equ 413Ah Input: HL,BC, Output: DEHL is result, A is 0
_DE_Times_BC equ 413Dh Input: DE,BC, Output: DEHL is result, A is 0
_DE_Div_BC equ 4140h Input: DE,BC, Output: HL=quotient, DE is remainder
_HL_Div_BC equ 4143h Input: HL,BC, Output: HL=quotient, DE is remainder

_HL_Times_A equ 4146h Input: HL,A, Output: DE=original HL, HL=Product, B
is 0

_DE_Times_A equ 4149h Input: DE,A, Output: HL=Product, B is 0
_IsHLAtEOF equ 414Ch Input: HL, Output: DE is (progEnd), c if HL is not

at or past the EOF
_SearchString equ 414Fh Input: BC=Size, DE=SearchStr, HL=Start, Output: cf

if there was a match, HL points to match
_CheckStatus equ 4152h Output: z if ON is pressed, c if 15MHz mode set
_GraphToLCD equ 4155h
_BufferToLCD equ 4158h Input: HL points to the buffer
_DrawRectToGraph equ 415Bh Input: A=Type, B=Height, C=Y-Coord, D=Width, E=X-

Coord
_PutSS equ 415Eh Input: HL points to sting, D is the byte to end

at, (textRow), (textCol)
_GPutSS equ 4161h Input: HL points to the zero terminated string,

b=Col, c=Row
_GPutS equ 4164h Input: HL points to the zero terminated string,

(textRow), (textCol)
_PutSC equ 4167h Input: A=char, (textRow), (textCol), Output:

Updated coords
_PutFS equ 416Ah Input: A=char, (textRow), (textCol)
_SqrtHL equ 416Dh Input: HL, Output: E
_Circle equ 4170h Input: DE=center(x,y), c=radius, a=method
_SetMem equ 4173h Input: A is the fill byte, HL is the location, BC

is the size
_ConvNumBase equ 4176h Input: C is the base, HL is the number, Output:

A=BC=#ofDigits, DE=0, HL=pointer to number string
_PrimeTest equ 4179h Input: HL, Output: BC=LowestFactor, HL is the

result after dividing by BC, cf if prime
_HL_Div_C equ 417Ch Input: HL,C Output: A is the remainder, B is 0, HL

is the quotient
_Is_2_Byte equ 417Fh Input: A, Output: z if 2-byte
_Is_Var_Name equ 4182h Input: A, Output: z if start of a var name
_DrawLine equ 4185h Input: A=Method, BC=(x1,y1), DE=(y2,x2)
_IncHLMem1 equ 4188h Output: HL is incremented, if it
_Conv_OP1 equ 418Bh Output: HL is incremented by 9, DE is the value, A

is the 8-bit value
_ConvDecAtHL equ 418Eh Input: Hl points to the FP number to convert,

Output: Same as above

_GetPixelLoc equ 4191h Input: bc=(x,y), Output: HL points to the byte, A
is the mask, c if on screen

_HexTok equ 4194h Input: HL=Output, DE=Input (hex), BC=Output size
_OP1NameLength equ 4197h Output: BC is the size of the program name in OP1
_NameLength equ 419Ah Input: HL points to the zero terminated string,

Output: same as above
_IsOP1GrammerProg equ 419Dh Output: z if Grammer prog, A=flashpage of data, BC

is the sixe, HL points to the data
_ReadArc equ 41A0h Input: A=page, HL=Input, DE=output, BC=size
_CallError equ 41A3h Input: A is the error code
_ONErr equ 41A6h
_MemErr equ 41A9h
_C_Div_L equ 41ACh Output: A is the remainder, BC is the quotient
_TileMap1 equ 41AFh Input: DE=MapLoc, BC=TileLoc, HL=MapWidth,

A=TileLogic, (TempWord2)=MapX, (TempWord3)=MapY
_HL_SDiv_BC equ 41B2h Output: HL=Quotient, DE=remainder
_VPutC equ 41B5h
_RoundHL_Div_C equ 41B8h Output: HL is the quotient, nc means it rounded up
_SearchLine equ 41BBh Input: HL=SearchStart, BC=number of bytes to

search, DE=LineNumber, A is the linebyte, Output:
BC is the number of bytes left, DE points to the
line, HL i sthe length of the line

_SendByte equ 41BEh
Inputs: HL is the Time

E is the byte to send
Outputs:
Destroys:

Notes:
_GetByte equ 41C1h

Inputs:
Outputs: L is the byte recieved

H is 0
Destroys:

Notes:
_PutIM equ 41C4h

Inputs: The string to display follows the call
Outputs: All registers are preserved
Destroys:

Notes: The first two bytes after the call is the string size
(little endian), then the string data. For example:
 call _ClrDraw
 call _PutIM
 .dw 5
 .db "Hello"
 jp GraphToLCD

_GPutSI equ 41C7h
Inputs: The zero-terminated string to display follows the call
Outputs: All registers are preserved
Destroys:

Notes: An example of using this:
 call _ClrDraw
 call _GPutSI
 .db "Hello World!",0
 jp GraphToLCD

_DrawRectToGraphI equ 41CAh
Inputs: The 5 bytes following the call are the inputs in this order:

 X coordinate
 Y coordinate
 Height
 Width
 Method
This uses the same drawing methods as _DrawRectToGraph

Outputs: All registers are preserved
Destroys:

Notes: This is useful if you need to draw a menu or something where
the rectangles have fixed sizes and position. It saves at
least 3 bytes per rectangle to use this.

_ParseFullArgI equ 41CDh
Inputs: BC is Ans

The code to execute directly follows the call.
Outputs: BC is the result

All other registers are preserved
Destroys:

Notes: This will parse some Grammer code following the call.
_CallI equ 41D0h

Inputs: BC is the input Ans
The code following (up until an End token)

Outputs: BC is the result
All other registers are preserved

Destroys:
Notes: This will parse the data following the call as Grammer code

until an End token is reached.

_DEHL_Mul_32Stack equ 41D3h
Inputs: DEHL

Two pushes to the stack. The last push is the lower 16-bits.
Outputs: AF is the return address

HLDEBC is the lower 48-bit result
4 bytes at TempWord1 contain the upper 32-bits of the result
4 bytes at TempWord3 contain the input stack values
The stack contains two pops to perform:
 First pop is the bits 33 to 48
 Second pop is the bits 49 to 64

Destroys:
Notes: This routine will multiply two 32-bit values and routine a

64-bit routine. To multiply 21030332h*54010320h:
 ld hl,2103h \ push hl
 ld hl,0332h \ push hl
 call _DEHL_Mul_32Stack
 pop af \ pop af
Now, technically, AFHLDEBC contains the 64-bit result where
C is the lowest 8-bits.

_CopyZStr equ 41D6h
Inputs: The string to copy is zeroterminated and follows the call

DE is the location to copy to
Outputs: All registers preserved, the string is copied.
Destroys:

Notes:
_CreateZVar equ 41D9h

Inputs: The name of the var directly follows the call and is zero-
terminated
BC is the size of the var to create

Outputs: AF is preserved
BC is the size of the var
DE points to the var data
HL points to the SymEntry

Destroys:
Notes: This will delete a preexisting var

_ChkFindVar equ 41DCh
Inputs: OP1 contains the name of the program, protected program,

temporary program, appvar, or group to search for.
Outputs: A is the type

B is the flashpage
C is the name length
DE points to the size bytes
HL points to the symentry

Destroys:
Notes:

_ChkFindVarAtDE equ 41DFh
Inputs: DE points to the name of the program, protected program,

temporary program, appvar, or group to search for.
Outputs: A is the type

B is the flashpage
C is the name length
DE points to the size bytes
HL points to the symentry

Destroys:
Notes: The name must include the type byte followed by the a string

that is either zero-terminated or 8 bytes long

_SearchVarBC equ 41E2h
Inputs: BC contains the name of the var to search for, excluding

programs, appvars, or any other user named variable. C is
the type and B is the number. For example, 01AAh searches
for Str2.

Outputs: A is the type
B is the flashpage
C is 2 (the name length)
DE points to the size bytes
HL points to the symentry

Destroys:
Notes:

_SearchVarAtHL equ 41E5h
_SearchVarAtDE equ 41E8h
_FindSym equ 41EBh
_FindVar equ 41EEh

Inputs: OP1 contains the name of the var to search for
Outputs: A is the type

B is the flashpage
C is the name length
DE points to the size bytes
HL points to the symentry

Destroys:
Notes: This combines _FindSym and _ChkFindVar to cover all vars

	Introduction
	Terminology
	_ProgramStart
	_CompatCall
	_SelectedProg
	_ExecOP1
	_ParserNext
	_ParseArg
	_ReadByte
	_Input
	_PCycle
	_PCycleDefault
	_PBufInfoDef
	_PBufInfo
	_NextParticle
	_AddParticle
	_ShiftGraphBuf
	_ShiftGraphUpA
	_ShiftGraphRightA
	_ShiftGraphLeftA
	_ShiftGraphDownA
	_ZeroMemF
	_SetMemF
	_ZeroMemE
	_SetMemE
	_nCr
	_SetSpeed
	_ZeroMem
	_ClrDraw
	_ClrHome
	_MaxMin
	_SetSmallMem
	_InvSmallMem
	_Rand
	_expr
	_lcmBC_DE
	_gcdHL_BC
	_Pause
	_PlotPixel
	_Call
	_PutSM
	_PutSprite
	_BreakProgram
	_ErrorJump
	_PutTile
	_CheckKey
	_GetKey
	_ParseFullArg
	_ParseNextFullArg
	_ParseCondition
	_Sine
	_EndOfCommand
	_EndOfArg
	_EndOfArgNotSto
	_FindEndToken
	_TokensToASCII
	_GetGrammerStr
	_pVarPointer
	_EndOfLine
	_EndOfNumber
	_EndOfHexNum
	_IsHexTok
	_ConvRStr
	_HL_Times_BC
	_DE_Times_BC
	_DE_Div_BC
	_HL_Div_BC
	_HL_Times_A
	_DE_Times_A
	_IsHLAtEOF
	_SearchString
	_CheckStatus
	_GraphToLCD
	_BufferToLCD
	_DrawRectToGraph
	_PutSS
	_GPutSS
	_GPutS
	_PutSC
	_PutFS
	_SqrtHL
	_Circle
	_SetMem
	_ConvNumBase
	_PrimeTest
	_HL_Div_C
	_Is_2_Byte
	_Is_Var_Name
	_DrawLine
	_IncHLMem1
	_Conv_OP1
	_ConvDecAtHL
	_GetPixelLoc
	_HexTok
	_OP1NameLength
	_NameLength
	_IsOP1GrammerProg
	_ReadArc
	_CallError
	_ONErr
	_MemErr
	_C_Div_L
	_TileMap1
	_HL_SDiv_BC
	_VPutC
	_RoundHL_Div_C
	_SearchLine
	_SendByte
	_GetByte
	_PutIM
	_GPutSI
	_DrawRectToGraphI
	_ParseFullArgI
	_CallI
	_DEHL_Mul_32Stack
	_CopyZStr
	_CreateZVar
	_ChkFindVar
	_ChkFindVarAtDE
	_SearchVarBC
	_SearchVarAtHL
	_SearchVarAtDE
	_FindSym
	_FindVar

